USN

Fifth Semester B.E. Degree Examination, June/July 2013

Analog Communication

Time: 3 hrs. Max. Marks: 100

> Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

Explain the terms mean, correlation and covariance functions.

Explain the properties of Gaussian process.

(09 Marks) (06 Marks)

- The PSD of a random process X(t) is shown in Fig.Q1(c).
 - Determine and sketch the autocorrelation function $R_X(\tau)$ of X(t). i)
 - ii) What is the power contained in X(t)?
 - iii) What is the ac power contained in X(t)?

(05 Marks)

2 Explain the operation of the envelope detector with circuit diagram and waveforms.

(08 Marks)

- b. What is the significance of double side band suppressed carrier modulation? Explain with time domain description. (04 Marks)
- Explain the operation of the Ring modulator circuit which generates the DSBSC waves.

(08 Marks)

- Explain the operation of quadrature carrier multiplexing scheme with transmitter and 3 a. receiver diagrams. (08 Marks)
 - With a block diagram approach, explain the phase discrimination method for generating SSB modulated wave. (08 Marks)
 - Explain the demodulation of SSB waves with a block diagram and mathematical expressions. (04 Marks)
- What is an importance of the vestigial sideband system? Explain the spectrum of VSB modulated wave containing a vestige of the lower sideband with frequency domain description. (06 Marks)
 - Give comparison of amplitude modulation techniques.

(06 Marks)

With a block-diagram approach, explain the operation of the frequency division multiplexing scheme. (08 Marks)

PART – B

What are the advantages of frequency modulation? Give relationship between frequency 5 modulation and phase modulation, with scheme for generating an FM wave by using a phase modulator and also scheme for generating a PM wave by using a frequency modulator.

(07 Marks)

- b. With block diagram approach, explain the generation of wideband FM wave by first 5 generating narrow band FM wave then convert narrow band FM wave into wideband FM wave, using frequency multiplier. (08 Marks)
 - c. The equation of an FM wave is given as $S(t) = 10 \sin[5.7 \times 10^8 t + 5 \sin 12 \times 10^3 t]$. Calculate: i) Carrier frequency, ii) Modulating frequency, iii) Modulation index, iv) Frequency deviation, v) Power dissipated in 100Ω load. (05 Marks)
- Explain the operation of balanced discriminator with circuit diagram, and characteristics for the demodulation of FM signals.
 - b. With a block diagram approach, explain the operation of FM stereo multiplexing with multiplexer in transmitter of FM stereo and demultiplexer in receiver of FM stereo. (08 Marks)
 - Briefly explain about the phase-locked loop.
- Explain briefly on the following:
 - Shot noise
 - ii) Thermal noise (05 Marks)
 - b. Derive an expression for equivalent noise temperature (Te) of overall circuit having number of amplifiers connected in cascade connection. (07 Marks)
 - Three amplifiers have following characteristics:

Amplifier 1: $F_1 = 8 \text{ dB}$, $G_1 = 42 \text{ dB}$

Amplifier 2: $F_2 = 9 \text{ dB}$ $\dot{G}_2 = 38 dB$

 $G_3 = 22 dB$ Amplifier 3: $F_3 = 5 \text{ dB}$

The amplifiers are connected in tandem. Determine which combination gives the lowest noise factor referred at input. (08 Marks)

- a. Considering the model of DSBSC receiver using coherent detection, explain the noise in 8 DSBSC receivers.
 - b. An FM receiver receives an FM signal S(t) = $10 \cos [2\pi \times 10^8 \text{ t} + 6 \sin (2\pi \times 10^3 \text{ t})]$. Calculate the figure of merit of this receiver.
 - e-en. c. With circuits and characteristics, explain the importance of pre-emphasis and de-emphasis in FM system. Explain the operation briefly.